An engaging math workbook to help your 8th grade student master the skills necessary to perform better in class and on standardized tests
Colorful, dynamic, and filled with engaging activities, McGraw Hill Math Grade 8, Third Edition provides maximum educational value, giving your 8th grader a student-friendly learning experience to learn and practice the skills they need to do well in school and on standardized tests.
Based on the curriculum standards followed by states across the U.S., McGraw Hill Math Grade 8 covers key topics with easy-to-follow instructions, helpful examples, and more than 1,000 practice problems with answers. End-of-chapter tests allow your child to see where mastery has been gained and what they need to focus on. As they master each concept, you child will sharpen their problem-solving skills and build the confidence they need to succeed in eighth grade math.
Features include:
NEW Addition of “real-world” questions and multi-step problems
A state-by-state guide shows you how to focus your child’s lessons
The guide shows which states have adopted Common Core State Standards, how each state has implemented the standards for math, and outlines the standards for non-Common Core states
1,000+ math problems with explanations for answers
A 10-Week Summer Study Plan shows you how to create the best study schedule for your child
A pretest helps your child determine which skills require more attention
End-of-chapter tests helps your child assess if they’ve mastered the chapter’s concepts
Posttest at the end of the book shows your child how well they understand key concepts
A glossary explains key terms that students will encounter in the book
Topics covered:Solving problems with rational numbers
Approximating irrational numbers
Ratios, proportions, and percents
Roots and exponents
Performing operations with scientific notation
Analyzing and solving linear equations and pairs of linear equations
Graphing proportional relationships and functions
Customary and metric units of measure, including conversions
Geometric transformations
Using the Pythagorean Theorem
Solving problems involving volume of cones and spheres
Analyzing patterns in bivariate data, including probability